|
整数阶电路基本定理到分数阶电路推广及分析 |
Generalization and Analysis of the Fundamental Theorem of Integer-order Circuits to Fractional-order Circuits |
投稿时间:2021-09-22 修订日期:2022-03-16 |
DOI: |
中文关键词: 分数阶电路 基尔霍夫定律 电路定理 |
英文关键词: Fractional-order Circuit, Kirchhoff's Law, Circuit Theorem |
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目) |
|
摘要点击次数: 832 |
全文下载次数: 1688 |
中文摘要: |
近几十年来,对分数阶电路的研究逐渐深入,但对其中电路定理的分析较少,因此针对分数阶电路需要进一步探究其规律,将一些经典的电路定理推广到分数阶电路中,使得在以后的分析过程中能直接使用。本文在整数阶电路定理的基础上,运用基尔霍夫定律在分数阶电路中证明了叠加定理、替代定理、等效电源定理和互易定理,并进行了应用分析。 |
英文摘要: |
In recent decades, the research on fractional-order circuits has gradually deepened, but there are few analysis of circuit theorems among them. Therefore, it is necessary to further explore its laws for fractional-order circuits, and extend some classic circuit theorems to fractional-order circuits, so that they can be directly used in the subsequent analyses process. Based on integer-order circuit theorems, this paper uses Kirchhoff's law to prove the superposition theorem, substitution theorem, equivalent power theorem and reciprocity theorem in the fractional-order circuit, and conducts application analysis. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |